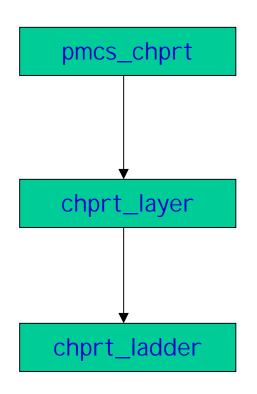


Silicon in PMCS

Frank Filthaut 11 January 2001

Motivation

Motivation is mainly in the context of Run 2b studies:


- Occupancy
- Acceptance

Clearly no effort to implement tracking algorithms...

Emphasis was on flexibility & ability to obtain quick results

Implementation

Under control of a flag doSiDetails in pmcs_chprt.rcp

Specifies a new RCP file to control parameters

RCP file completely specifies a silicon detector:

#layers

For each layer:

#barrels

Barrel length

Gap between barrels

#channels/ladder

ladder width

repeating azimuthal sectors

For each sector:

#ladders

Radius (cm), φ (rad), and tilt angle w.r.t. normal (rad)

Limitations:

Only barrel geometries (no disks); only axial strips
No mis-alignments, multiple scattering

Infinitely thin planes; no charge deposition model

Implementation (cont'd)

Code:

- pmcs_chprt::buildEvent(), for each charged particle: invoke intersect() method of each chprt_layer
- This will search for all ladders intersected by the particle
 - ◆ Take into account "loopers" crossing a layer more than once
 - Some known imperfections (will not always find all ladders), should be very small effect
- For each hit ladder, calculate hit strip and increase its hit counter
- At end of event (in fact, in pmcs_chprt::analyzeEvent) clear hit counters
- Methods to interrogate ladders for occupancy, stored in n-tuple (in addition to #layers crossed by particles)
 - ◆ Requires new block in n-tuple (store maximum & avg occupancy per layer)

Implementation (cont'd)

Other details:

- pmcs_util/pmcs_func.hpp:
 - ◆ Added one parameter to the list of track parameters (charge sign) needed for calculations
 - Added methods dealing with geometry
 - ◆ NB: I think this set of track parameters is slightly inconsistent, in that it doesn't allow to switch the B-field direction
- pmcs_util/rcp_tools.hpp:
 - ◆ Added method to retrieve RCP object
- pmcs/pmcsMergeKinePkg.hpp:
 - ◆ Fixed the package so that minimum bias events can be overlaid on top of high-p_t events (simple fix: replace auto_ptr with dO_Ref)

Outlook

Now working on a study of the effect of including silicon in the L1CTT

- Implement also CFT
- Change interface, to have a chprt_SiLayer and chprt_CftLayer derive from abstract chprt_layer
- ☐ Start with simple-minded CFT implementation
 - ◆ axial only
 - no staggered doublet layers but a single, infinitely thin cylinder
 - ◆ no charge deposition model
- Will try to isolate trigger-specific code as much as possible from other aspects (likely to take significant amount of CPU time, under control of RCP parameter)
- Nothing preventing more complete implementation (I hope)

Contributions welcome!